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ABSTRACT 
 
This paper introduces an original method for automatic 
3D segmentation of the prostate gland from Magnetic 
Resonance Imaging data. A statistical geometric model is 
used as a priori knowledge. Prostate boundaries are then 
optimized by a Bayesian classification based on Markov 
fields modelling. We compared the accuracy of this 
algorithm, free from any manual correction, with contours 
outlined by an expert radiologist. In 3 random cases, 
including prostates with cancer and benign prostatic 
hypertrophy (BPH), mean Hausdorff’s distance (HD) and 
Overlap Ration (OR) were 8.07 mm and 0.82, 
respectively. Despite fast computing times, this new 
method showed satisfying results, even at prostate base 
and apex. Also, we believe that this approach may allow 
delineating the peripheral zone (PZ) and the transition 
zone (TZ) within the gland in a near future.    
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1. INTRODUCTION 

In the last decade, Magnetic Resonance Imaging (MRI) 
has been a reference for assessment of prostate cancer 
extension. It has been carried out only when the tumor has 
already been diagnosed by means of biopsies. Prostate 
segmentation applications used for real-time 
interventional procedures are usually based on Ultrasound 
imaging (US) [1]. Nevertheless, there is a recent interest 
in imaging for treatment planning of robotized surgery or 
emerging focal cancer ablation techniques (HIFU, 
photodynamic or thermal therapy,…). In these cases, MRI 
is best suited because it provides a better contrast 
resolution for tissue characterization and allows full 3D 
description of the gland, potential regions of interest, and 
surrounding structures. In the field of prostate 
segmentation, various image processing techniques have 
been investigated : Mazonakis and al. [2] presented a CT-
based growing region-based technique for prostate, 

bladder and rectum segmentation, in which user 
intervention remained necessary for thresholds definition. 
Freedman and al. [3] combined an appearance and form 
model with probability distribution of object-inside 
photometric variables for prostate and rectum 
segmentation. As far, Pasquier and al. [4] presented a 
deformable model-based method for automatic volume 
definition in conformal radiotherapy planning. A manual 
correction was necessary for both apex and base of the 
gland where the contrast between prostate and 
surrounding structures (muscles and seminal vesicles, 
respectively) is a challenging issue. In this paper, we 
refine these results using a Markov fields-based Bayesian 
framework. 
 

2. METHOD 

We consider 2 random fields X = {xs , s S} and Y = {ys , 
s S},  where S is the set of voxels. Each xs takes its 
values in a finite set of labels ={-1, 1} and each ys takes 
its value in the set of the MR image grey levels. 
The approach described in this paper is a Bayesian 
segmentation that can be summarized in four steps: 
i) Integration of  prostate 3D model, that will be used as 
an initial labelling X°.  
ii) Characterization of an a priori probability P(X) of 
voxels’ labelling, using Markov field modelling. 
iii) Establishment of a conditional law for the image grey 
levels P (Y | X).  
iv) Estimation of the optimum labels field X, that 
maximizes the a posteriori probability P(X|Y). 
Figure 1 shows the organizational structure of the method. 

Figure 1 - Global scheme of the method 
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2.1. 3D Model 
In a previous work [4;5], a generic prostate model had 
been established from a training base of 20 manual 
outlines. The model, deduced by a principal component 
analysis, is composed of an average shape and of the most 
important deformation directions. The model is initialized 
on the image, and a heuristic optimization by the 
simulated annealing algorithm is performed to estimate 
the best parameters describing the prostate’s contours. 
This first 3D contour is converted into a set of labels by 
attributing +1 to voxels that belong to prostate and -1 to 
those that do not. Consequently, an initial labels’ vector 
X° is established. 
 
2.2. A priori probability 
The initial labelling X° cannot be operated without 
ensuring that it performs a Markov field. Precisely, 
according to Hammersley-Clifford’s theorem (1971) for 
which a demonstration is given in [6], X is a Markov field 
if and only if it follows a Gibbs’ distribution, defined as 
follows: 

1P(x) exp[ U(x)]
Z

 (1) 

c
c C

U(x) J (x)  (2) 

Where Jc is a clique-related potential that will be defined 
further on, Xc is the restriction on the clique c, and C is 
the set of S cliques. 
To meet this requirement, we use the Gibbs’ sampler 
algorithm. Frequently cited in the literature [7], it can 
generate a Markov field from any vector of labels. In 
order to do that, we have to express the a priori 
probability P(X), thus defining the energy function U(x).  
We will then use Potts’ (or Ising) model [8;8] which 
defines U(x) as : 

s
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Evaluation of parameters  and  is usually carried out by 
estimation methods and fairly generic approximations [6]. 
In this work, we decided to determine them through 
simulation, as we have sufficient information about the X 
field. We consider a 26-connexity system, in which the 
labels’ sum in each voxel’s neighbourhood takes a value 
ranging [-27, 27]. Figure 2 shows the variation of 

 for different values of  and =0 : 
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Figure 2 - A priori probability simulation 
 
From simulation results we can establish that 

s VP(x 1| x )s  is “blurred” when  decreases; assigning a 
tiny value to  (0.15 or 0.05) allows having a less 
deterministic labelling, which authorizes further evolution 
possibilities. We set  to 0.15 and, by a similar 
simulation,  is set to 0. 
 
2.3. Image formation law 
In order to model P(Y|X), the conditional probability of 
image values knowing the labels field, we conducted a 
statistical study on gray levels. After processing the 
histogram in a Volume Of Interest (VOI), we could 
approximate it by a mixture of Gaussians, which 
parameters (μi, i, ki) would be automatically extracted 
using a mode recognition algorithm [9]. Gray levels’ 
histogram mainly contains three modes: 
i) The first mode, which mean is located in the black 
levels, represents tissues and fat surrounding the prostate. 
In our study, we make it correspond to the -1 class.  
ii) The second mode is the largest one: it represents the 
gray levels of prostate’s transition zone. 
iii) The last mode is situated in the high gray levels, and 
despite its small size, has an important significance: it 
represents tissue of prostate’s peripheral zone, and 
eventually some cysts in the transition zone.  
We can then approximate the conditional probability of a 
voxel’s gray level knowing its label by: 

2s
s s

y

y1 1 1P(y | x ) . exp[ ( ) ]
Z 22

 (5) 

where Zy is a normalization constant, and ( , ) are 
Gauss parameters of class . As a first approach, this 
expression faces an ambiguity as two Gaussian modes 
could both be representative of prostate. We solve this 
problem by comparing distances between voxel’s gray 
level ys and each mode’s mean i. 

2s i
s s

y ii

y1 1 1P(y | x 1) . exp[ ( ) ]
Z 22

 (6) 
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where 2s i

i

y -i=arg[ min ( ) ]. 

Finally, we model the image formation law as follows: 
s s

2s

y

2s i

y ii

P(y | x )
y1 1 1. exp[ ( ) ] if =-1

Z 22
y1 1 1. exp[ ( ) ] if =+1 

Z 22

 
(7) 

Where 2s i

i

y -i=arg[ min ( ) ]. 

 
Markovianity of (Y, X) 
As we adopt Hidden Markov Field Model, we can 
stipulate that: 

H1: sP( =P |x )  s S  s sy |x) (y
H2 :  

s
s S

P(y|x)= P(y |x)

Hence: 
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Where (xs) is the class of voxel s.  
Supposing 

( )sx
s S

globally constant, we may express 

P(y|x) as: 

yx

1P(y | x) exp[ H(y, x)]
Z

 (9) 

where yxZ  is a constant and s

s

s (x ) 2

s S (x )

y -
H(y,x)=- ( )  is 

the energy function defined on S.  
According to Hammersley – Clifford theorem [7], (Y, X) 
is a Markov field. This conclusion is going to be helpful 
in the following section. 
 

2.4. Estimation, optimization and decision
Based on the Maximum A Posteriori (MAP) decision 
method, voxels classification would consist in searching a 
labelling x* that maximizes P(x|y):  

|S|x
x* arg[max(P(x| y))]

 (10) 
According to Bayes’ formula: 

P(x, y) P(x).P(y | x)P(x | y) P(x).P(y | x)
p(y) p(y)

 (11) 

From this, according to equations (1) and (8): 

x yx

1P(x | y) exp[ U(x) H(y, x)]
Z .Z

 (12) 

Since it is almost impossible to compute all labelling 
probabilities, we will assess the MAP by the Iterated 
Conditional Mode (ICM) estimator [6]. This determinist 
algorithm requires a relevant initialization, and consists on 
retaining the class that maximizes the probability P(xs|y) 
for each voxel: 

|S|

s

x

s s S

s sx

x* arg[max(P(x| y))]

x* (x )  so that: 
s S, x arg[max(P(x | y))]

 (13) 

In addition, according to equation (11): 
s sP(x |y) P(x ).P(y|x )s  

As (Y, X) and X are Markov fields, which globally means 
that probabilities are neighborhood-dependent, we are 
able to assume that: 

ss s s s V sP(x |y) P(x ).P(y|x ) P(x | x ).P(y |x )s  (14) 
Hence, maximizing P(xs|y) could be done by maximizing 
P(xs |xVs).P(ys| xs). To do so, we implemented the ICM 
algorithm as follows: 

Initialize a first labelling map X°, using the 
Gibbs-sampled 3D model.  
Repeat, for each iteration n: 
o browse all sites and calculate for each the 

conditional probability  n-1 s VsP (x |x ,y)
o apply the decision rule: 
 

s
 

s

n
s s

x
x =arg[ Max (P(x |V ,y))]

Until reaching a little change between two 
successive iterations.  

3. EXPERIMENTS AND RESULTS 

The first tests were performed on T2-weighted BFFE 
images obtained on a Philips 1.5 T Achieva MRI device 
with a voxel size of 0.83 x 0.83 x 4 mm. Figure 3a 
illustrates results in a large prostate, showing BPH (112 
cc), for which the deformable model alone was 
insufficient as prostate dimensions exceeded the generic 
model. Figure 3b shows a prostate with a large uniform 
low-intensity tumour of the right peripheral zone that 
mimics central zone signal, and could theoretically hinder 
automatic segmentation. Mean manual contouring time 
(MMCT) required for the expert radiologist on 15 slices 
was 18 min 20 sec [15-23 min.]. Mean automatic 
contouring time (MACT) required for our algorithm on a 
standard PC was 72 sec [64-83 sec.]. We compared the 
contours obtained with both methods (free from any 
manual correction) using Hausdorff’s distances (HD) 
[10], Gravity Distance (GD), overlap ratios (OR), and 
Volume Properly Contoured (VPC). Results are detailed 
in table 1.  
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Figure 3 - Segmentation results presented at (i) base (ii) central 
zone (iii) apex and 3D visualisation. (a) Prostate with BPH. (b) 
prostate with a large low intensity tumour of PZ. 
 
Patient HD (mm) GD (mm) OR VPC

1 7.24 2.97 0.81. 0.90 
2 6.85 2.80 0.84 0.89 
3 10.40 3.05 0.82 0.91 

mean 8.16 2.94 0.82 0.90
Table 1 -  Comparison of manual and automatic segmentation. 

4. DISCUSSION AND CONCLUSION 

In this study, we developed a method for automatic 
contouring of 3D prostate MRI that combines statistical 
information on prostate geometry, with a Bayesian 
segmentation based on Markov fields.  
The first tests show that the integration of a Bayesian 
framework improves the results previously reported by [4] 
when using a deformable model alone, especially at the 
base and the apex, where surrounding tissues are in 
contact with the gland and hinder the deformable model. 
The well-known robustness of Markov models and rapid 
convergence of ICM estimator explain this increased 
performance. Nevertheless, minor contouring errors still 
persist at the apex, and our method still needs to be 
improved at this location. It should also be evaluated on a 
larger set of patients, and with different sequence 
parameters (thinner slices, higher spatial resolution) that 
may improve its accuracy. 
This method was designed to be part of a multi-source 
prostate segmentation project, that will take account of  
other MRI sequences with different contrasts (T2-w, T1-
w, diffusion-weighted,…). Data fusion based on Evidence 
theory could help resolve persistent issues at the apex. In 
addition, different settings of our method could be applied 
to distinguish transition from peripheral zone, which is an 
issue of major concern in clinical practice, especially for 
cancer treatment planning.  
We plan to include this segmentation method in a 
prostate-dedicated computer aided diagnosis (CAD) 

software [11] designed for prostate cancer localization, 
volume assessment and treatment planning. 
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